Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models
نویسندگان
چکیده
منابع مشابه
Efficient Estimators for Generalized Additive Models
Generalized additive models are a powerful generalization of linear and logistic regression models. In this paper we show that a natural regression graph learning algorithm efficiently learns generalized additive models. Efficiency is proven in two senses: the estimator’s future prediction accuracy approaches optimality at rate inverse polynomial in the size of the training data, and its runtim...
متن کاملParameter Estimation for Generalized Thurstone Choice Models
We consider the maximum likelihood parameter estimation problem for a generalized Thurstone choice model, where choices are top-1 items from comparison sets of two or more items. We provide tight characterizations of the mean square error, as well as necessary and sufficient conditions for correct classification when each item belongs to one of two classes. These results provide insights into h...
متن کاملDimension reduction and parameter estimation for additive index models
In this paper, we consider simultaneous model selection and estimation for the additive index model. The additive index model is a class of structured nonparametric models that can be expressed as additive models of a set of unknown linear transformation of the original predictor variables. We introduce a penalized least squares estimator and discuss how it can be efficiently computed in practi...
متن کاملEfficient and fast spline-backfitted kernel smoothing of additive models
A great deal of effort has been devoted to the inference of additive model in the last decade. Among existing procedures, the kernel type are too costly to implement for high dimensions or large sample sizes, while the spline type provide no asymptotic distribution or uniform convergence. We propose a one step backfitting estimator of the component function in an additive regression model, usin...
متن کاملGeneralized Nonparametric Mixed-Effect Models: Computation and Smoothing Parameter Selection
Generalized linear mixed-effect models are widely used for the analysis of correlated nonGaussian data such as those found in longitudinal studies. In this article, we consider extensions with nonparametric fixed effects and parametric random effects. The estimation is through the penalized likelihood method, and our focus is on the efficient computation and the effective smoothing parameter se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2004
ISSN: 0162-1459,1537-274X
DOI: 10.1198/016214504000000980